
Mechanical Systems and Signal Processing 150 (2021) 107301
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp
A comb-like beam based piezoelectric system for galloping
energy harvesting
https://doi.org/10.1016/j.ymssp.2020.107301
0888-3270/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors at: Engineering Research Center of Energy Saving Technology and Equipment of Thermal Energy System, Ministry of E
Zhengzhou University, 100 Science Avenue, Zhengzhou 450000, China (J. Wang); Department of Mechanical Engineering, The University of Auc
Symonds Street, Auckland 1010, New Zealand (L. Tang).

E-mail addresses: jlwang@zzu.edu.cn (J. Wang), l.tang@auckland.ac.nz (L. Tang).
Guobiao Hu a,b, Junlei Wang a,c,⇑, Lihua Tang b,⇑
aEngineering Research Center of Energy Saving Technology and Equipment of Thermal Energy System, Ministry of Education, Zhengzhou University, 100
Science Avenue, Zhengzhou 450000, China
bDepartment of Mechanical Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010, New Zealand
c School of Mechanical and Power Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450000, China
a r t i c l e i n f o

Article history:
Received 30 May 2020
Received in revised form 25 July 2020
Accepted 9 September 2020

Keywords:
Metamaterial beam
Galloping
Energy harvesting
Multiple-degree-of-freedom
Piezoelectrics
a b s t r a c t

This paper proposes a comb-like beam (CombBeam) based piezoelectric energy harvester
(PEH) for harvesting wind energy by exploiting the galloping mechanism. The
CombBeam-based PEH consists of a series of parasitic beams being mounted to a conven-
tional cantilever beam with a piezoelectric transducer. A theoretical modelling method is
established to simplify the proposed CombBeam-based PEH as a multiple-degree-of-
freedom (MDOF) system. The conventional beam PEH is first represented as a single-
degree-of-freedom (SDOF) system and the parasitic beam is then also converted into an
equivalent SDOF system. A factor is derived to correct the reaction force of the SDOF model
of the parasitic beam to address the force interaction between the host beam and the par-
asitic beam and a scaling factor is introduced to reflect the effect of the parasitic beam
when being mounted onto the host beam at different positions. The complete mathemat-
ical formulations of the MDOF model for the CombBeam-based PEH under the base excita-
tion and the aerodynamic force excitation are developed. Under the base excitation, a finite
element model is built to first verify the MDOF model of the proposed CombBeam-based
PEH in terms of derived equivalent lumped parameters, correction factors and scaling fac-
tor. A physical prototype of the proposed CombBeam PEH is then fabricated and the wind
tunnel experiment is conducted to validate the MDOF model for predicting the energy har-
vesting performance under aerodynamic force excitation. The PEH undergoing galloping is
referred as CombBeam-based GPEH to distinguish it with that under the base excitation.
The results show that the CombBeam-based GPEH has the advantages over a conventional
beam GPEH in reducing the cut-in wind speed from 2.24 m/s to 1.96 m/s and enhancing the
power output around the optimal resistance for about 171.2% under a specific wind speed
of 3 m/s.
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1. Introduction

In the past two decades, vibration energy harvesting has been extensively studied with the purpose to replace traditional
chemical batteries for powering small electronic devices [1–9]. Vibration sources available for harvesting can be mainly clas-
sified into two categories: base vibration [10–12] and flow-induced vibration [13–18]. Mechanisms for generating flow-
induced vibration include galloping [19–21], wake galloping [22,23], flutter [24] and vortex-induced vibration [25–28]. A
recent review paper summarized the state-of-the-art of flow-induced vibration for energy harvesting [1]. To finally convert
the vibration into desired electrical energy, electromagnetic [29], electrostatic [30], and piezoelectric [31,32] transduction
methods can be employed. Because of the advantages of high power density and ease of implementation, using piezoelectric
materials for energy harvesting has attracted numerous research interests.

Galloping-induced vibration has the characteristics of large oscillation amplitude and wide range of operating wind
speed. Therefore, galloping piezoelectric energy harvesters (GPEHs) have been explosively researched. A conventional GPEH
can be devised by attaching a bluff body to the tip of a piezoelectric beam [33]. In the wind flow, an aerodynamic fore acted
onto the bluff body drives the piezoelectric beam to vibrate. The underlying physics is that the aerodynamic fore applied on
the bluff body plays the role of negative damping that induces the aerodynamic instability. When this negative damping
neutralizes the mechanical damping of the GPEH and the total damping of the system becomes negative, the instability is
triggered and the GPEH eventually settles with limit cycle oscillations. Various models have been proposed to predict the
performance of GPEHs. Since a cantilever beam can be modelled as a single-degree-of-freedom (SDOF) system [34,35], a
GPEH that consists of a cantilever beam with a bluff body is often modelled as a SDOF system described by lumped param-
eters [17,27]. Besides the SDOF modelling method, Zhao et al. [36] developed an analytical model for a cantilever GPEH
shunted to a synchronized charge extraction (SCE) interface circuit. Tang et al. [37] proposed an equivalent circuit model
(ECM) which can bridge the mechanical and electrical domains to ease the analysis of GPEHs shunted to complicated inter-
face circuits.

Improving the power output and reducing the cut-in wind speed for broadband operation are the two main concerns in
the design of a GPEH. To this end, various innovative configurations have been proposed by researchers to improve the per-
formance of GPEHs. Bibo et al. [19] proposed a bi-stable GPEH by introducing a magnetic nonlinearity. The result showed
that once the inter-well oscillation of the bi-stable GPEH was activated, the enhanced power output of the GPEH could be
achieved. Yang et al. [38] employed a double-beam system in the design of a novel galloping energy harvester and reduced
the cut-in wind speed up to 41.9%. Wang et al. [39] added Y-shaped attachments on the bluff body of a wind energy har-
vester. The transition from vortex-induced vibrations into galloping was experimentally observed and the energy harvesting
performance was enhanced. Instead of using a SDOF design of GPEH, Zhao et al. [40] built a nonlinear GPEH using a cut-out
cantilever beam which was equivalent to a 2-DOF system. The experimental results showed that the cut-in wind speed was
beneficially decreased and the power output was increased.

On the other hand, metamaterials with unique dynamic behaviours derived from artificially engineered micro-structures
[41–43] have attracted increasing interests for being used in the design of novel vibration energy harvesting systems [44–
50]. Shen et al. [51] designed a metamaterial plate using spiral beams as local resonators and readily available conversion
medium for energy harvesting. The output power was enhanced at multiple resonant frequencies in the low frequency
regime as compared to a similar plate without local resonators. Mikoshiba et al. [46] proposed a metamaterial with local
resonators made of spring-suspended magnets to realize energy conversion. The experimental result showed that the pro-
posed metamaterial based system could not only isolate vibrations but also convert vibrations into electricity. Liu et al. [52]
designed a broadband acoustic energy harvester based on a meta-surface consisting of coupled Helmholtz resonators. An
experimental evaluation showed that the proposed metamaterial based acoustic energy harvester could produce a high volt-
age output over a wide frequency range in 460–680 Hz. More recently, Chen et al. [53] proposed a metamaterial plate
shunted to a self-powered synchronized charge extraction (SCE) circuit for energy harvesting. Based on the Kirchhoff plate
theory and equivalent impedance method, they developed the theoretical model. The effects of the SCE circuit on the band
gap behaviour of the metamaterial and the energy harvesting performance were investigated and validated by experiment.

According to the state-of-the art of the research, thoughmetamaterials have been employed in designing vibration energy
harvesters, the research is still limited to the base excitation generated vibration. Regarding flow-induced vibration energy
harvesting, related research has not been found yet in the existing literature. In this paper, galloping energy harvesting is
realized based on the structure composed of a metamaterial-inspired beam, a bluff body and a piezoelectric transducer. It
is well known that an important feature of metamaterials is the structural periodicity. Since only a single piezoelectric trans-
ducer is bonded on the main beam rather than a series of periodic piezoelectric transducers embedded in the local res-
onators, we term the proposed design as a comb-like beam based galloping energy harvester according to the structural
appearance. For conciseness, it is referred as ‘‘CombBeam-based GPEH” hereinafter. The rest of the paper is organized as fol-
lows: In Section 2, the design of the proposed CombBeam-based GPEH is briefly introduced. In Section 3, we present the the-
oretical modelling of the proposed CombBeam-based PEH. A MDOF model for describing the proposed CombBeam-based
PEH is established. Mathematical formulations for describing the dynamic motion of the MDOF PEH under the base excita-
tion and the aerodynamic force excitation are developed. Since both models under different excitations have similar math-
ematical formulations, except for the forcing load terms, the validation of the established MDOF model is proceeded from
two aspects. In Section 4, the finite element method is used to verify the developed MDOF model for describing the proposed
2
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CombBeam-based PEH under a base excitation. In Section 5, an experiment is conducted to evaluate the performance of the
proposed CombBeam-based GPEH. The results are used to validate the developed MDOF model under aerodynamic force
excitation. Section 6 summaries the findings from this work.

2. CombBeam-based GPEH

Fig. 1(a) shows the schematic of a conventional GPEH consisting of a cantilever beam attached with a square-sectioned
bluff body and bonded with a piezoelectric transducer at the root. Fig. 1(b) shows the proposed CombBeam-based GPEH that
is designed on the basis of a conventional GPEH. A series of parasitic beams are periodically mounted on the host beam by
screw connection following the manner of a metamaterial beam. It is worth mentioning that a parasitic beam is actually split
into two identical small cantilever beams by the host beam. This symmetric design is to minimize the torsional motion of the
host beam due to any artificially introduced unexpected imbalance. The wind flows from the right to left and the wind direc-
tion is in parallel to the beam length direction. The aerodynamic force acted on the bluff body causes the beam to vibrate in
the beam thickness direction. The bonded piezoelectric transducer converts the galloping-induced vibrations into electrical
energy.

3. Theoretical modelling

3.1. Equivalent lumped parameters of parasitic beam

A parasitic beam is treated as two identical cantilevered beams which can be represented as a single SDOF system with
lumped parameters. Fig. 2 shows the diagram of the parasitic beam with annotations of dimensional parameters. The equiv-
alent mass ma, stiffness ka and damping coefficient ca can be derived as:
ma ¼ 1
/2
1a Lað Þ ka ¼ x2

1a
/2
1a Lað Þ

ca ¼ 2f1ax1a
/2
1a Lað Þ la ¼ /1a Lað Þc1a

8><
>: ð1Þ
Fig. 1. Schematic of (a) conventional GPEH and (b) CombBeam-based GPEH.
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Fig. 2. Diagram of the parasitic beam with annotations of dimensional parameters.
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where La is the length of the parasitic beam. f1a is the damping ratio. c1a ¼
R La
x¼0 m/1a xð Þdxþ /1a Lað ÞMta in which m denotes

the mass per unit length of the parasitic beam andMta represents the tip mass attached at the tip of the parasitic beam. /1a xð Þ
is the mass normalized fundamental mode shape of the parasitic beam. la is a factor applied to the forcing term to convert
the distributed load applied on the beam into an equivalent concentrated force. x1a is the fundamental natural frequency of
the parasitic beam that can be determined from the following characteristic equation:
1þ cos b1aLað Þcosh b1aLað Þ þ b1aMta

m
cos b1aLað Þsin b1aLað Þ � sin b1aLað Þcosh b1aLað Þð Þ

� �
¼ 0 ð2Þ
where b4
1a ¼ x2m=EaIa. After determining b1a from Eq. (2), the explicit expression of /1a xð Þ can be written as:
/1a xð Þ ¼ C1 cos baxð Þ � cosh baxð Þ þ r1a sin baxð Þ � sinh baxð Þð Þ½ � ð3Þ

where r1a ¼ m sin b1aLað Þ�sinh b1aLað Þð Þþb1aMta cos b1aLað Þ�cosh b1aLað Þð Þ

m cos b1aLað Þþcosh b1aLað Þð Þ�b1aMta sin b1aLað Þ�sinh b1aLað Þð Þ. C1 is a constant that is determined in the mass normalization process

to satisfy the following orthogonality relation:
Z La

x¼0
/1a xð Þm/1a xð Þdxþ /1a Lað ÞMta/1a Lað Þ ¼ 1 ð4Þ
The parasitic beam has already been represented by a SDOF model by assuming that the lumped parameters are concen-
trated at the beam tip. However, the derived lumped parameters are only effective parameters at the beam tip. The reaction
force of the parasitic beam at the root can be analytically expressed as:
f R tð Þ ¼ EaIa
@3wa x; tð Þ

@x3

�����
x¼0

þ csaIa
@4wa x; tð Þ
@x3@t

�����
x¼0

ð5Þ
where the first term and the second term denote the stiffness and damping-related forces, respectively. wa x; tð Þ is the deflec-
tion of the parasitic beam relative to the base. It is worth mentioning that when the parasitic beam is later attached to the
host beam, the ‘‘base” here will refer to the ‘‘host beam”. g1a tð Þ is the modal coordinate of the fundamental mode. csa is the
equivalent coefficient of strain rate damping that can be expressed using the damping ratio f1a as csa ¼ 2Ea=x1af1a. Using
mode-superposition method and only keeping the first mode, we have wa x; tð Þ ¼ /1a xð Þg1a tð Þ. Substituting
wa x; tð Þ ¼ /1a xð Þg1a tð Þ into Eq. (5) and assuming g1a tð Þ to be time harmonic yields:
f R tð Þ ¼ 1þ 2jxf1ax1að Þg1a tð Þ � R La
x¼0 EaIa

d4/1a xð Þ
dx4 dxþ EaIa

@3/1a xð Þ
@x3

���
x¼La

� �
¼ � 1þ 2jxf1ax1að Þg1a tð Þ R La

x¼0 EaIa
d4/1a xð Þ

dx4 dxþx2Mta

h i ð6Þ
On the other hand, the reaction force of the SDOF model of the parasitic beam can be calculated as:
� kaua tð Þ þ ca _ua tð Þ½ � ¼ � 1þ 2jxf1ax1að Þ x2
1a

/2
1a Lað Þ /1a Lað Þg1a tð Þ½ �

¼ � 1þ 2jxf1ax1að Þ g1a tð Þ
/1a Lð Þ

Z La

x¼0
EaIa

d4/1a xð Þ
dx4

/1a xð Þdx
" #

ð7Þ
4
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where ua tð Þ is the displacement of the parasitic beam tip relative to the base. Again, the ‘‘base” here will refer to the ‘‘host
beam” if the parasitic beam is attached to the host beam. �kaua tð Þ and �ca _ua tð Þ are the stiffness and damping-related forces,
respectively. The relationship between the actual reaction force of the resonant beam and the reaction force calculated using
the simplified SDOF model is:
a ¼ f R tð Þ
� kaua tð Þ þ ca _ua tð Þ½ � ¼

m/1a Lð Þ
R La

x¼0
/1a xð Þdxþ/2

1a Lð ÞMta

m
R La

x¼0
/2
1a xð Þdx

þ/1a Lð Þ x2

x2
1a
Mta � /2

1a Lð ÞMta

m
R La

x¼0
/2
1a xð Þdx

2
6664

3
7775 ð8Þ
Neglecting the small terms in Eq. (8), one can use la as the approximated a to correct the reaction force of the parasitic
beam calculated using the simplified SDOF model. It is worth mentioning that since a parasitic beam is split into two iden-
tical cantilever beams as explained in Section 1, when converting the parasitic beam into an equivalent SDOF model, it needs
to be first processed with one cantilever beam to obtain its equivalent lumped parameters, and then the equivalent lumped
parameters (i.e., ma, ka and ca) of the parasitic beam should double those of a single cantilever. However, the correction fac-
tors, i.e., la and a, remain the same.

3.2. Equivalent lumped parameters of host beam

Since the parasitic beam has already been represented by a SDOF system with the correction of the reaction force at the
root, the governing equations of the whole structure can be expressed as:
EI1
@4w1 x1 ;tð Þ

@x41
þ csI1

@3w1 x1 ;tð Þ
@x21@t

þm1
@2w1 x1 ;tð Þ

@t2
þ #v tð Þ � dd x1ð Þ

dx1
� dd x1�L1ð Þ

dx1

h i
¼ �m1 €wb tð Þ

EI2
@4w2 x2 ;tð Þ

@x42
þ csI2

@3w2 x2 ;tð Þ
@x22@t

þm2
@2w2 x2 ;tð Þ

@t2
¼

� m2 þMtd x2 � L2ð Þ½ � €wb tð Þ
þMtdc

dd x2�L2ð Þ
dx

€wb tð Þ

�PS
i¼1

FR
i d x� xRi
� �

ejxt

8>>><
>>>:

9>>>=
>>>;

ma€u
R
1;rel tð Þ þ ca _u

R
1;rel tð Þ þ kauR

1;rel tð Þ ¼ �ma €w2 xR1; t
� �þ €wb tð Þ� �

..

.

ma€u
R
S;rel tð Þ þ ca _u

R
S;rel tð Þ þ kauR

S;rel tð Þ ¼ �ma €w2 xRS ; t
� �þ €wb tð Þ� �

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð9Þ
where j ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit, x1 and x2 are the local spatial coordinates of the beam sections with and without piezo-

electric coverage (0 6 x1 6 L1 and 0 6 x2 6 L2).w1 x1; tð Þ and w2 x2; tð Þ represent the beam deflections relative to the base
motion wb tð Þ. d xð Þ is the Dirac delta function. # ¼ �e31bphpc is the piezoelectric coupling term, in which hpc is the position
of the centre of the piezoelectric layer to the neutral axis and e31 ¼ Epd31 is the piezoelectric constant in the unit of C/m2.
d31 is the piezoelectric constant in the unit of C/N.Mt is the tip mass (bluff body). dc is the distance from the centre of gravity
of the bluff body to its attaching point on the host beam. FR

i is the reaction force applied on the host beam by the i-th parasitic
beam (local resonator). m1 and m2 are the mass per unit length and EI1 and EI2 are the bending stiffnesses of the two beam
sections, respectively. These parameters can be calculated by using the geometric and material properties of the beam as:
m1 ¼ qshsbs þ qphpbp

m2 ¼ qshsbs

EI1 ¼ Esbs h3
b � h3

a


 �
=3þ Epbp h3

c � h3
b


 �
=3

EI2 ¼ Esbsh
3
s =12

8>>>>><
>>>>>:

ð10Þ
where Es and Ep are the Young’s moduli of the substrate and piezoelectric layers, respectively. ha is the position of the bottom
surface of the substrate layer to the neutral axis, hb and hc are the positions of the bottom and top of the piezoelectric layer to
the neutral axis, respectively. These parameters including the aforementioned hpc are dependent on the material and geo-
metric properties of the substrate and piezoelectric layers. They can be calculated using the following expressions.
ha ¼ � Epbphp 2hsþhpð ÞþEsbsh
2
s

2 EpbphpþEsbshsð Þ
hb ¼ hs þ ha

hc ¼ hp þ hb

hpc ¼ hbþhc
2

8>>>>><
>>>>>:

ð11Þ
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Fig. 3. Diagram of the host beam with annotations of dimensional parameters.
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To simplify the host beam as a SDOF system as well, we first consider the host beam only which is shown in Fig. 3.
Neglecting the parasitic beams yields a conventional beam PEH for which the governing equations of the beam regarding
the sections with and without the piezoelectric layer are written as:
EI1
@4w1 x1 ;tð Þ

@x41
þm1

@2w1 x1 ;tð Þ
@t2

þ #v tð Þ � dd x1ð Þ
dx1

� dd x1�L1ð Þ
dx1

h i
¼ �m1 €wb tð Þ

EI2
@4w2 x2 ;tð Þ

@x42
þm2

@2w2 x2 ;tð Þ
@t2

¼ � m2 þMtd x2 � L2ð Þ �Mtdc
dd x2�L2ð Þ

dx

h i
€wb tð Þ

8><
>: ð12Þ
First, to determine the natural frequencies and mode shapes of the beam, the electromechanical coupling term, the damp-
ing term and the forcing term are temporarily dropped. Using the variable-separation approach, we can assume the solution
of the beam deflection by variable separation in the form as:
wk xk; tð Þ ¼ /k xkð Þg tð Þ ð13Þ

where the subscript k = 1,2 denotes two beam sections. /k xkð Þ is the shape function and g tð Þ is the time dependent quantity
and is assumed to be time harmonic. Substituting Eq. (13) into Eq. (12) and neglecting g tð Þ that applies to all the field vari-
ables, the governing equation for the free vibration of the beam is then simplified as:
EIk
d4/k xkð Þ

dx4
�x2mk/k xkð Þ ¼ 0 ð14Þ
The solutions to Eq. (14) are assumed in the form as follows:
/1 x1ð Þ ¼ A1sinb1x1 þ B1cosb1x1
þC1sinhb1x1 þ D1coshb1x1

� �

/2 x2ð Þ ¼ A2sinb2x2 þ B2cosb2x2
þC2sinhb2x2 þ D2coshb2x2

� �
8>>><
>>>: ð15Þ
in which b4
k ¼ x2mk=EIk. The boundary conditions (i.e., clamped end, free end and continuities) are mathematically

expressed as follows:
/1 0ð Þ ¼ 0
/0

1 0ð Þ ¼ 0
/1 L1ð Þ ¼ /2 0ð Þ
/0

1 L1ð Þ ¼ /0
2 0ð Þ

EI1/
00
1 L1ð Þ ¼ EI2/

00
2 0ð Þ

EI1/
000
1 L1ð Þ ¼ EI2/

000
2 0ð Þ

EI2/
00
2 L2ð Þ ¼ Jtx2/0

2 L2ð Þ þMtdcx2/2 L2ð Þ
EI2/

000
2 L2ð Þ ¼ �Mtdcx2/0

2 L2ð Þ �Mtx2/2 L2ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð16Þ
where Jt is the moment of inertia of the tip mass about the axis that passes through the attaching point. By substituting Eq.
(15) into Eq. (16) and re-expressing in the matrix form, then letting the determinant of the coefficient matrix to be of zero in
order to have a non-trivial solution, one obtains:
T1N1 þ T2N3

þT3N5 þ T4N7

� 

T1N2 þ T2N4

þT3N6 þ T4N8

� 

T5N1 þ T6N3

þT7N5 þ T8N7

� 

T5N2 þ T6N4

þT7N6 þ T8N8

� 

���������

���������
¼ 0 ð17Þ
where
6
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N1 ¼ R1 þ R3ð Þcosb1L1 � R1 � R3ð Þcoshb1L1½ �=2
N2 ¼ � R3 þ R1ð Þsinb1L1 þ R1 � R3ð Þsinhb1L1½ �=2
N3 ¼ 1þ R2ð Þsinb1L1 � 1� R2ð Þsinhb1L1½ �=2
N4 ¼ 1þ R2ð Þcosb1L1 � 1� R2ð Þcoshb1L1½ �=2
N5 ¼ R1 � R3ð Þcosb1L1 � R1 þ R3ð Þcoshb1L1½ �=2
N6 ¼ R3 � R1ð Þsinb1L1 � R3 þ R1ð Þsinhb1L1½ �=2
N7 ¼ 1� R2ð Þsinb1L1 � 1þ R2ð Þsinhb1L1½ �=2
N8 ¼ 1� R2ð Þcosb1L1 � 1þ R2ð Þcoshb1L1½ �=2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

R1 ¼ b1
b2

R2 ¼ E1 I1b
2
1

E2 I2b
2
2

R3 ¼ E1 I1b
3
1

E2 I2b
3
2

8>>>><
>>>>:

T1 ¼ � EI2b
2
2 þMtdcx2

� �
sin b2L2ð Þ � Jtx2b2cos b2L2ð Þ� �

T2 ¼ � EI2b
2
2 þMtdcx2

� �
cos b2L2ð Þ þ Jtx2b2sin b2L2ð Þ� �

T3 ¼ EI2b
2
2 �Mtdcx2

� �
sinh b2L2ð Þ � Jtx2b2cosh b2L2ð Þ� �

T4 ¼ EI2b
2
2 �Mtdcx2

� �
cosh b2L2ð Þ � Jtx2b2sinh b2L2ð Þ� �

T5 ¼ �EI2b
3
2 þMtdcx2b2

� �
cos b2L2ð Þ þMtx2sin b2L2ð Þ� �

T6 ¼ EI2b
3
2 �Mtdcx2b2

� �
sin b2L2ð Þ þMtx2cos b2L2ð Þ� �

T7 ¼ EI2b
3
2 þMtdcx2b2

� �
cosh b2L2ð Þ þMtx2sinh b2L2ð Þ� �

T8 ¼ EI2b
3
2 þMtdcx2b2

� �
sinh b2L2ð Þ þMtx2cosh b2L2ð Þ� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
Solving Eq. (17) yields the natural frequencies and the mode shapes of this conventional beam PEH. Moreover, using the
boundary conditions presented in Eq. (16), the orthogonality relations can be derived as follows:
R L1

x¼0m1/1;j xð Þ/1;i xð Þdxþ R L2
x¼0m2/2;j xð Þ/2;i xð ÞdxþMt/2;i L2ð Þ/2;j L2ð Þ

þMtdc/2;i L2ð Þ/0
2;j L2ð Þ þMtdc/

0
2;i L2ð Þ/2;j L2ð Þ þ Jt/

0
2;i L2ð Þ/0

2;j L2ð Þ

" #
¼ dij

R L1
x¼0EI1

d4/1;i xð Þ
dx4

d/1;j xð Þ
dx dxþ R L2

x¼0EI2
d4/2;i xð Þ

dx4
d/2;j xð Þ

dx dx

� /2;j xð ÞEI2 d3/2;i xð Þ
dx3

h i
x¼L2

þ d/2;j xð Þ
dx EI2

d2/2;i xð Þ
dx2

h i
x¼L2

2
64

3
75 ¼ x2

i dij

8>>>>>>><
>>>>>>>:

ð18Þ
where /k;i xkð Þ is the i-th mode shape. For the forced vibration of the conventional beam PEH, using the modal superposition
method, the relative displacement of the beam sections wk(xk, t) can be expressed as the summation of the product of mode
shapes and modal coordinates as:
wk xk; tð Þ ¼
X1
r¼1

/k;r xkð Þgr tð Þ ð19Þ
where gr tð Þ is the modal coordinate of the r-th mode. Substituting Eq. (19) into Eq. (12), then using the orthogonality rela-
tions given in Eq. (18), the modal mechanical governing equation can be obtained:
d2gr tð Þ
dt2

þ 2frxr
dgr tð Þ
dt

þx2
rgr tð Þ þ vrv tð Þ ¼ crAccejxt ð20Þ

where vr ¼ #
d/1;r x1ð Þ

dx1

����
x1¼L1

; cr ¼ �
R L1
x1¼0 /1;r x1ð Þm1dx1 þ

R L2
x2¼0 /2;r x2ð Þ m2 þMtd x2 � L2ð Þ½ �dx2

� R L2
x2¼0 /2;r x2ð ÞMtdc

dd x2�L2ð Þ
dx dx2

8<
:

9=
;

xr is the natural frequency of the r-th mode and Acc is the amplitude of the acceleration of the base €wb tð Þ, i.e.,
€wb tð Þ ¼ �Accejxt . The steady-state voltage response has the form of v tð Þ ¼ Vpejxt . The modal response can then be obtained
as:
gr tð Þ ¼ crAcc � vrVp
� �

ejxt

x2
r �x2 þ j2frxrx

ð21Þ
The relative displacement at the free end can thus be expressed by substituting Eq. (21) into Eq. (13):
w2 L2; tð Þ ¼
X1
r¼1

/2;r L2ð Þ crAcc � vrVp
� �

ejxt

x2
r �x2 þ j2frxrx

ð22Þ
The linear-electroelastic constitutive relation for the piezoelectric material is expressed as:
De x1; tð Þ ¼ e31S x1; tð Þ þ eS33E3 tð Þ ð23Þ
7
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where S(x1,t) is the bending strain, De(x1,t) is the electric displacement, eS33 is the permittivity at constant stress of the piezo-
electric transducer. The electric field in the piezoelectric transducer in terms of the voltage across it can be expressed as
E3 tð Þ ¼ �v tð Þ=hp. According to the Euler- Bernoulli beam theory, the average bending strain in the piezoelectric transducer

can be expressed asS x1; tð Þ ¼ �hpc @2w1 x1; tð Þ=@x21
� �

. Therefore, Eq. (23) becomes:
De x1; tð Þ ¼ �e31hpc
@2w1 x1; tð Þ

@x21
� eS33

v tð Þ
hp

ð24Þ
Integrating the electric displacement over the electrode area and then differentiating with respect to time provides the
current ip(t) flowing out of the piezoelectric transducer as follows:
ip tð Þ ¼ #

Z L1

x1¼0

@3w1 x1; tð Þ
@x21@t

dx� Cp
dv tð Þ
dt

ð25Þ
where Cp ¼ eS33bL1=hp represents the capacitance of the piezoelectric transducer. The clamped boundary condition implies

that @2w1 0;tð Þ
@x1@t

¼ 0 at x1 = 0. Eq. (25) thus becomes:
ip tð Þ ¼ #
@2w1 x1; tð Þ

@x1@t

�����
x1¼L1

� Cp
dv tð Þ
dt

ð26Þ
The governing equations of the electromechanical system are formed by Eq. (20) and Eq. (26). In the following, the mode
shapes of this system are determined. Then, based on the calculated mode shapes, the modal superposition method is
employed to derive the closed-form solution of the electromechanically coupled equations. Substituting Eq. (19) into Eq.
(26) yields the modal circuit governing equation:
Cp
dv tð Þ
dt

þ ip tð Þ ¼
X1
r¼1

vr
dgr tð Þ
dt

ð27Þ
Considering that the cantilever beam PEH is shunted to a resistor Rload, i.e., ip tð Þ ¼ v tð Þ=Rload, then combining Eq. (27) and
Eq. (21), one can solve for Vp as:
Vp ¼
P1

r¼1vr
jxcrAcc

x2
r �x2þj2frxrx

1
Rload

þ jxCp


 �
þP1

r¼1
jxv2r

x2
r �x2þj2frxrx

n o ð28Þ
Eq. (28) provides the analytical solution to the voltage response of the cantilever beam PEH. However, its formulation is
relatively cumbersome. According to the literature, using the fundamental mode is sufficiently accurate to predict the energy
harvesting performance around the fundamental resonance. Hence, by considering the fundamental mode and taking the tip
displacement as degree of freedom, the cantilever beam PEH can be equivalently represented as a SDOF system (as shown in
Fig. 4) with the lumped parameters [54]
M ¼ 1
/2
2;1 L2ð Þ K ¼ x2

1
/2
2;1 L2ð Þ D ¼ 2f1x1

/2
2;1 L2ð Þ

H ¼ v1
/2;1 L2ð Þ l ¼ /2;1 L2ð Þc1 uh tð Þ ¼ /2;1 L2ð Þg1 tð Þ

8<
: ð29Þ
and the governing equations of the SDOF model can be obtained by rearranging Eqs. (20) and (27) as:
Fig. 4. Equivalent SDOF model of a cantilever beam PEH under base excitation.
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M€uh tð Þ þ D _uh tð Þ þ Kuh tð Þ þHv tð Þ ¼ �lMAccejxt

v tð Þ
Rload

þ Cp _v tð Þ ¼ H _uh tð Þ

(
ð30Þ
It is worth noting that the tip displacement of the host beam relative to the base is redefined as uh tð Þ for conciseness.

3.3. Position-dependent scaling factor of parasitic beam

Following the same procedure for obtaining Eq. (20), applying the same manipulation to Eq. (9), the modal governing
equation of the host beam mounted with parasitic beams can be obtained:
€g1 tð Þ þ 2f1x1 _g1 tð Þ þx2
1g1 tð Þ þ v1v tð Þ ¼ �c1Accejxt �

XS
i¼1

FR
i /2;1 xRi

� �
ejxt ð31Þ
Dividing both sides of Eq. (31) by /2;1 L2ð Þ and noting that the equivalent lumped parameters of the host beam with the tip
mass given in Eq. (29). Rearranging the resultant equation (i.e., dividing both sides of Eq. (31) by /2;1 L2ð Þ) yields:
M€uh tð Þ þ D _uh tð Þ þ Kuh tð Þ þHv tð Þ ¼ �lMAccejxt �
XS
i¼1

/2;1 xRi
� �

/2;1 L2ð Þ|fflfflfflfflffl{zfflfflfflfflffl}
ji

FR
i e

jxt ð32Þ
where ji is the scaling factor that reflects the effect of the i-th parasitic beam on the host beam when being mounted at the
position of xRi . Considering that the excitation of the i-th parasitic beam can be expressed in terms of the tip displacement of
the host beam relative to the base (i.e., uh tð Þ):
w xRi ; t
� � ¼ /2;1 xRi

� �
/2;1 L2ð Þw L2; tð Þ ¼ /2;1 xRi

� �
/2;1 L2ð Þ uh tð Þ ¼ jiuh tð Þ ð33Þ
and the parasitic beam has already been represented by a SDOF system in Section 3.1, the governing equations of the i-th
parasitic beam (i.e., local resonator) can be rewritten as:
ma€ui tð Þ þ ca _ui tð Þ � ji _uh tð Þ½ � þ ka ui tð Þ � jiuh tð Þ½ � ¼ �lama€ub tð Þ ð34Þ

where ui tð Þ is the tip displacement of the i-th parasitic beam relative to the base. It should be noted that w xRi ; t

� � ¼ jiuh tð Þ is
the displacement of the attaching point on the host beam of the i-th parasitic beam relative to the base. The reaction force of
the i-th parasitic beam should be defined in terms of the displacement relative to the attaching point on the host beam, i.e.
ui tð Þ � jiuh tð Þ, as
FR
i e

jxt ¼ f Ri tð Þ ¼ �a ca _ui tð Þ � ji _uh tð Þ½ � þ ka ui tð Þ � jiuh tð Þ½ �f g ð35Þ

It is worth mentioning that a is the reaction force factor that has already been derived in Section 3.1. Also, the ‘‘base” in

Section 3.1 is the attaching point on the host beam here and therefore ua tð Þ in Eq. (8) should be replaced by ui tð Þ � jiuh tð Þ
here. Substituting Eq. (35) into Eq. (32), the governing equations of the host beam can be obtained as:
M€uh tð Þ þ D _uh tð Þ þ Kuh tð Þ þHv tð Þ þ
XS
i¼1

a j2
i ca _uh tð Þ � _ui tð Þ

ji

� �
þ j2

i ka uh tð Þ � ui tð Þ
ji

� �� �
¼ �lMAccejxt ð36Þ
3.4. MDOF model under base excitation

Both the host beam and the parasitic beams have been individually converted into equivalent independent SDOF systems.
Using the derived scaling factor in Section 3.3 to address the coupling between the host beam and the parasitic beams, an
equivalent MDOF model as shown in Fig. 5 for the proposed CombBeam-based PEH can be constructed. Letting u�i

¼ ui tð Þ=ji,

m�a;i
¼ j2

i ma, c�a;i
¼ j2

i ca, k�a;i
¼ j2

i ka and A�cc
¼ Acc=ji, the governing equations of the MDOF model for the CombBeam-based

PEH under translational base excitation can be formulated in the form as:
M€uh tð Þ þ D _uh tð Þ þ Kuh tð Þ þHv tð Þ þPS
i¼1a c�a;i

_uh tð Þ � _u�i
tð Þ

� 

þ k�a;i

uh tð Þ � u�i
tð Þ

� 
� �� �
¼ �lMAccejxt

m�a;i
€u�i

þ c�a;i
_u�i
� _uh tð Þ

� 

þ k�a;i

u�i
tð Þ � uh tð Þ

� 

¼ �lam�a;i

A�cc
ejxt

v tð Þ
Rl

þ Cp _v tð Þ ¼ H _uh tð Þ

8>>>>>><
>>>>>>:

ð37Þ
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Fig. 5. Equivalent MDOF model of the CombBeam-based PEH under base excitation.
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It should be mentioned that apart from the excitation forces on the right hand side of Eq. (37), the mathematical formu-
lation of the MDOF model on the left hand side of Eq. (38), i.e., the employment of the lumped parameters and the correction
and scaling factors (a, ji), is the same for both base excitation and aerodynamic force excitation. Therefore, though the main
purpose of this study is to present the design and the modelling of a CombBeam-based PEH for galloping energy harvesting, a
base excitation case study using finite element method will also be presented later to assist the verification of the developed
MDOF model. In addition, a small difference between the two excitation cases lies in that ui tð Þ and uh tð Þ in the aerodynamic
force excitation case are absolute displacements.

3.5. MDOF model under aerodynamic force excitation

When the proposed CombBeam-based PEH undergoes galloping vibration in the direction normal to the wind flow, the
aerodynamic force exerted onto the bluff body can be expressed as:
Fgalloping ¼ 1
2
qaSU

2
X

i¼1;2:::

ai
_w2 L2; tð Þ þ dc _w

0
2 L2; tð Þ

U

� 
i

ð38Þ
where qa is the density of the air, S is the characteristic area normal to the wind flow with the speed of U. ai i ¼ 1;2:::ð Þ are
the empirical coefficients for the polynomial fitting. To distinguish it with the CombBeam-based PEH under the base exci-
tation, we refer this system undergoing galloping vibration as CombBeam-based GPEH. The equivalent MDOF model of
the CombBeam-based GPEH is shown in Fig. 6. Since the tip displacement of the host beam w2 L2; tð Þ has been redefined
as uh tð Þ for conciseness, Eq. (40) can be rewritten in the form as:
Fgalloping ¼ 1
2
qaSU

2
X

i¼1;2:::

ai 1þ /0
2;1 L2ð Þ

/2;1 L2ð Þdc

 !
_uh tð Þ
U

" #i
ð39Þ
The governing equations of the CombBeam-based GPEH can then be established as:
10



Fig. 6. Equivalent MDOF model of the CombBeam-based GPEH under aerodynamic force excitation.
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M€uh tð Þ þ D _uh tð Þ þ Kuh tð Þ þHv tð Þ þPS
i¼1a c�a;i

_uh tð Þ � _u�i
tð Þ

� 

þ k�a;i

uh tð Þ � u�i
tð Þ

� 
� �� �
¼ Fgalloping

m�a;i
€u�i

þ c�a;i
_u�i
� _uh tð Þ

� 

þ k�a;i

u�i
tð Þ � uh tð Þ

� 

¼ 0

v tð Þ
Rl

þ Cp _v tð Þ ¼ H _uh tð Þ

8>>>>>><
>>>>>>:

ð40Þ
By introducing the variables:
y1 ¼ uh

y2 ¼ _uh

:::

y2iþ1 ¼ u�i

y2iþ2 ¼ _u�i
:::

y2Sþ3 ¼ v tð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð41Þ
Eq. (29) can be rearranged in the state space form as:
_y1 ¼ y2

_y2 ¼ 1
M

1
2qaSU

2P
i¼1;2:::ai 1þ /0

2;1 L2ð Þ
/2;1 L2ð Þ dc


 �
y2
U þ /0

2;1 L2ð Þ
/2;1 L2ð Þ y1

h ii
� Dy2 � Ky1 �Hy2Sþ3

�PS
i¼1a c�a;i

y2 � y2iþ2

� �þ k�a;i
y1 � y2iþ1

� �� �
8>><
>>:

9>>=
>>;

:::

_y2iþ1 ¼ y2iþ2

_y2iþ2 ¼ � 1
m�a;i

c�a;i
y2iþ2 � y2
� �þ k�a;i

y2iþ1 � y1
� �� �

:::

y2Sþ3 ¼ 1
Cp

Hy2 � y2Sþ3
Rl


 �

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð42Þ
which can be solved using a numerical method such as the Runge-Kutta method. It can be found that the analysis based on
the developed MDOF model is pretty simple. Though there exist other rigorous modelling methods, the developed MDOF
model provides a fast and convenient means for evaluating this kind of system. Moreover, another benefit of the MDOF
model is that when it is shunted to complicated interface circuits such as SCE [55], P-SSHI [56], S-SSHI [57] etc., we can easily
11
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bridge the structural modelling and the electrical simulation using the formulated simple MDOF model to perform a com-
prehensive study.

It should be stated that the developed MDOF model is valid for predicting the dynamic behaviour of the proposed system
around only the fundamental resonance. As the limit-cycle oscillation of a galloping energy harvester is just around the fun-
damental natural frequency, the developed MDOF model is sufficient to capture the dynamic characteristics of the proposed
system when being used for galloping energy harvesting. On other hand, a resonant-type vibration energy harvester gener-
ally delivers the maximum power output around the fundamental resonance. When the proposed system is employed for
harvesting energy from base excitation, its power output around the fundamental resonance is most important. In this sce-
nario, the developed MDOF model can work properly to predict the energy harvesting performance.

4. Finite element verification

It can be noted in Sections 3.4 and 3.5 that the MDOF models under the base excitation and the aerodynamic force exci-
tation have exactly the same mathematical formulations except for the forcing terms. This section aims to provide a verifi-
cation of the developed MDOF model of the CombBeam-based PEH under a base excitation using the commercial finite
element software ANSYS.

4.1. Conventional beam PEH

Firstly, a finite element model of the conventional beam PEH as shown in Fig. 7 is built to verify the equivalent lumped
parameters derived in Section 3.2. The three-dimensional (3D) 20-node structural solid element SOLID186 is used for the
host beam and the tip mass (bluff body). The 3D 20-node coupled-field solid element SOLID226 is used for the piezoelectric
transducer. To maintain uniform electrical potentials over the electrodes, the voltage degrees of freedom (DOFs) on the top
and bottom surfaces of the piezoelectric transducer are coupled, separately. Then, the two electrodes are coupled to the two
nodes of a circuit element CIRCU94 that is defined with a resistance characteristic to emulate the connection to a resistor. In
the following case study, we directly use the geometric and material parameters of the fabricated physical prototype pre-
sented in Section 5.

The time harmonic base excitation is controlled at an acceleration amplitude of 1 m/s2. For the given system parameters
listed in Table 1, by using Eq. (38), the equivalent lumped parameters of the conventional beam PEH can be derived as:
M = 5.4 g, K = 21.963 N/m, D = 0.0041 N�s/m, H = 3.9657 � 10�5N/V and l = 0.4408. Fig. 8 shows the open-circuit voltage
responses of the conventional beam PEH. It should be mentioned that the fundamental natural frequencies of the cantilever
beam PEH predicted by the developed SDOF model and the FE model are slightly different, respectively, 11.609 Hz and
11.573 Hz. The relative error of the developed SDOF model is only about 0.31%. To focus on the comparison of the voltage
amplitude, the frequency axes for the SDOF model and FE model are normalized by each natural frequency. From Fig. 8(a), it
can be seen that the results from both models are in a good agreement. The maximum voltage amplitude calculated by the FE
model is 19.53 V. The result predicted by the SDOF model is 19.78 V, which indicates an error of about 1.28%. It is worth
mentioning that the SDOF model only considers the fundamental mode of the conventional PEH which is the main cause
of the error. To demonstrate this, Fig. 8(b) shows the zoomed-in view of the Fig. 8(a) around the resonance and the analytical
result by including the first three modes of the conventional beam PEH is also provided. It can be found that the maximum
Fig. 7. (a) The geometric and (b) mesh models of the conventional beam PEH.
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Table 1
Geometric and material parameters of the conventional beam PEH.

Beam

Length 140 mm Material density 2700 kg/m3

Width 20 mm Young’s modulus 70 GPa
Thickness 0.5 mm Poisson’s ratio 0.3

Tip Mass (Bluff Body)
Length 140 mm Material density 16 kg/m3

Width 32 mm Young’s modulus 700 MPa
Thickness 32 mm Poisson’s ratio 0.3

Piezoelectric Transducer
Length 28 mm Material density 5440 kg/m3

Width 14 mm Young’s modulus 30.336 GPa
Thickness 0.3 mm Poisson’s ratio 0.3
Piezoelectric constant d31 �120 pC/N permittivityeS33 2.3556 � 10�8F/m

Fig. 8. (a) Open-circuit voltage response of the conventional beam PEH and (b) the zoomed-in view around the resonance.
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voltage amplitude from the analytical model is about 19.7 V and the relative error is reduced to 0.87%. However, since the
relative error of the SDOF model is minor, the SDOF model can be regarded as being successfully verified, thus the derived
equivalent lumped parameters. This means that for the conventional beam PEH, around its fundamental resonance, using the
fundamental mode is sufficiently accurate to describe its dynamic behaviour and it is therefore regarded as a SDOF system
around the fundamental resonance and we often refer it as a SDOF PEH.
4.2. Reaction force of SDOF model of parasitic beam

Though the SDOF model of a pure cantilever beam has been validated and widely used in the literature, the reaction force
correction factor a presented in Section 3.1 is proposed for the first time. Hence, before proceeding to the verification of the
MDOF model of the CombBeam-based PEH, we perform a verification of the derived reaction force correction factor a
through the comparison with a corresponding finite element model. The geometric and material parameters of the parasitic
beam of the fabricated physical prototype that will be introduced in Section 5 is directly used in the following verification
study. The mass density and the Young’s modulus of the parasitic beam are 7800 kg/m3 and 200 GPa, respectively. The
length, width and thickness are 40 mm, 8 mm and 0.1 mm, respectively. For the controlled base excitation of 1 m/s2,
Fig. 9 shows the frequency response of the reaction force at the root of the cantilever beam. The blue solid line and the black
dashed line denote the result of the SDOF models using and not using the derived correction factor a, respectively. The red
circle denotes the result from ANSYS. The results in Fig. 9(a) and (b) correspond to the configuration with a tip mass of 0 g
and 5 g, respectively. It can be observed that when the tip mass is 0 g (Fig. 9(a)), the traditional SDOF model without using a
produces a remarkable error in predicting the reaction force. Correcting the reaction force using the derived a significantly
improves the accuracy and reduces the relative error from 35.74% to 0.626%. When the tip mass is increased to 5 g (Fig. 9(b)),
all the three curves almost coincide with each other, which means that omitting the correction factor a does not make any
noticeable influence given a relatively heavy tip mass.
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Fig. 9. Reaction force frequency response when the tip mass is (a) 0 g and (b) 5 g.

Fig. 10. Relative errors of the SDOF model in predicting the reaction force using and without using the correction factor a for different tip masses.
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To give more insights into the importance of the reaction force correction factor a, Fig. 10 shows the relative errors of the
SDOF model in predicting the reaction force as a function of the tip mass. It can be found that the prediction error is always
very minor and can be neglected when the correction factor a is used. However, if the factor a is not used to conduct the
correction, the relative error can be very remarkable: when the tip mas is 0 g, the relative error is about 35.74%. Moreover,
we can note that with the increase of the tip mass, the relative error of forgetting to use the correction factor a decreases:
when the tip mass is increased to 10 g, the prediction error is reduced to 0.34%. It should be noted that the relative error not
only depends on the tip mass, but also varies with the beam stiffness which is dependent on its geometric and material
parameters. Therefore, to ensure an accurate prediction of the reaction force, the correction factor a is recommended to
be always used.

4.3. CombBeam-based PEH

After having verified the SDOF model of the conventional beam PEH and the reaction force factor a, we now proceed to
the verification of the MDOFmodel for the CombBeam-based PEH whose geometric and mesh models are shown in Fig. 11(a)
and (b), respectively. The parasitic beam is also emulated using the 3D 20-node structural solid element SOLID186. The geo-
metric and material parameters of the parasitic beam have already been given in Section 4.2. The host beam and the tip mass
are the same as those for the conventional beam PEH as presented in Section 4.1. The mounting positions of the parasitic
beams are annotated in Fig. 11(a).

It should be mentioned that for the physical prototype, the tip mass attached to the parasitic beam is 1.8 g. Using the
SDOF representation method developed in Section 3.1 and noting that a pair of parasitic beams are represented as a single
local resonator, the equivalent lumped parameters of the local resonator can be calculated as:ma = 3.7 g, ka = 12.5 N/m, ca = 0.
14



Fig. 11. (a) The geometric and (b) mesh models of the CombBeam-based PEH.

Fig. 12. Open-circuit voltage response of the CombBeam-based PEH.
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0026 N�s/m, la = 1.0187 and a = 1.0187. The scaling factors for the three parasitic beams being mounted from the root to the
tip of the host beam are j1 = 0.1849, j2 = 0.4585 and j3 = 0.8089, respectively. Under the base excitation of 1 m/s2, Fig. 12
shows the voltage response of the CombBeam-based PEH that corresponds to the physical prototype. The fundamental nat-
ural frequencies of the CombBeam-based PEH predicted by the developed MDOF model and the FE model are 6.876 Hz and
6.573 Hz, respectively. The relative error of the developed MDOF model in predicting the fundamental natural frequency is
about 4.60%. The maximum voltage amplitudes calculated using the developed MDOF model and the FE model are 45.21 V
and 42.86 V, respectively, which indicates that the developed MDOF model overestimates the maximum voltage amplitude
for about 5.48%.

In the modelling of the CombBeam-based PEH, the parasitic beams are converted to equivalent mass-spring systems
being attached at a series of discrete points on the host beam. However, in the practical physical prototype, the width of
the parasitic beam has a certain dimension. Thus, this leads to the discrepancy between the MDOF model and the FE model.
To prove this speculation, Fig. 13 compares the results from the MDOF model and the FE model by varying the width of the
parasitic beam. From Fig. 13(a) and (b), we can see that with the decrease of the width of the parasitic beam, the fundamen-
tal natural frequencies and the maximum open-circuit voltage amplitudes predicted by both models get closer. Fig. 13(c)
shows the corresponding relative errors of Fig. 13(a) and (b) and verifies that with the decrease of the width of the parasitic
beam, the prediction error of the MDOF model decreases. Due to the complexity of the structural architecture of the
CombBeam-based PEH, the developed MDOF model can be regarded as a convenient means to provide a fast performance
evaluation of the proposed CombBeam-based PEH.
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Fig. 13. (a) Fundamental natural frequency, (b) maximum open-circuit voltage of the CombBeam-based PEH predicted by the MDOF model and the FE
model, (c) the relative errors of the MDOF model in terms of predicting the fundamental natural frequency and the maximum open-circuit voltage.

Fig. 14. (a) Physical prototype of the CombBeam-based GPEH, (b) wind tunnel setup and (c) data acquisition system.
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5. Experimental validation and comparative analysis

The results under the base excitation in Section 4 have validated the MDOF model in terms of the derived lumped param-
eters, scaling factors and correction factors. To further validate the developed MDOF model under aerodynamic force exci-
tation as presented in Section 3.5, an experimental study is performed. Fig. 14(a), (b) and (c) show the fabricated physical
prototype, the wind tunnel setup and the data acquisition system, respectively. The detailed system parameters of the fab-
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ricated physical prototype have been given in the previous sections. The tunnel for producing the incident air flow has a
round cross-section with a diameter of 400 mm. A hot-wire anemometer is used to measure the wind speed. The system
damping ratios are measured based on a free vibration decay test. The damping ratios of the host beam along with the bluff
body and the parasitic beam for their first modes are 0.0267 and 0.007, respectively. In the theoretical calculation, we
assume that the damping ratios are constant in the low frequency regime below their fundamental natural frequencies.
The characteristic dimension of the cross-section of the wind tunnel is 0.4 m, the operation wind speed in the following case
study is beyond 1.5 m/s, the kinematic viscosity is 1.5 � 10�5 at the temperature of 20

�
, the corresponding Reynolds number

is larger than 40000. Therefore, the empirical aerodynamic coefficients presented in Eq. can be referred to [17]: a1 = 2.3,
a2 = 0 and a3 = -18, which were experimentally determined for a square-sectioned bluff body under the laminar flow with
a high Reynolds number larger than 33000.

The experimentally measured and the SDOF/MDOF model predicted open-circuit voltage amplitudes versus the wind
speed are presented in Fig. 15. The black square and the red line affixed with asterisk marks denote the experimentally mea-
sured and the SDOF model predicted open-circuit voltage amplitudes of the conventional beam GPEH, respectively. The blue
circle and the pink line affixed with plus marks denote the experimentally measured and the MDOF model predicted results
of the CombBeam-based GPEH, respectively. The cut-in wind speeds of the conventional beam GPEH measured from the
experiment and predicted by the SDOF model are 2.24 m/s and 2.3 m/s, respectively. The cut-in wind speeds of the
CombBeam-based GPEH measured from the experiment and predicted by the MDOF model are 1.96 m/s and 2.0 m/s, respec-
tively. The error and discrepancy may partly come from the inaccuracy of the MDOF model that has been discussed in Sec-
tion 4.3. In general, the developed SDOF and MDOF models give good predictions in terms of the cut-in wind speeds of the
conventional and CombBeam-based GPEHs. From both the experimental result and the numerical result calculated by the
SDOF/MDOF model, the cut-in wind speed of the CombBeam-based GPEH is reduced as compared to the conventional beam
GPEH, which indicates that the CombBeam-based GPEH has an advantage over the conventional beam GPEH for low-speed
wind energy harvesting. Moreover, it can be observed from both the experimental and numerical results, the open-circuit
voltage amplitude increases monotonically with the increase of the wind speed for both the conventional beam and
CombBeam-based GPEHs. In addition, the voltage amplitude of the CombBeam-based GPEH is always larger than that of
the conventional beam GPEH under any wind speed. Hence, the CombBeam-based GPEH demonstrates a better energy har-
vesting performance than the conventional beam GPEH.

With the validated model of CombBeam-based GPEH, under the wind speed of 3 m/s, Fig. 16 further shows the simulated
transient open-circuit voltage responses of the conventional beam and CombBeam-based GPEHs. As shown in Fig. 16(a) and
(c), under the aerodynamic force, the conventional beam/CombBeam-based GPEH starts to vibrate until a steady-state limit-
cycle is reached as shown in Fig. 16(b) and (d). At the wind speed of 3 m/s, the CombBeam-based GPEH produces a voltage
output amplitude of 20.57 V which is much larger than that of the conventional beam GPEH (i.e., 10.02 V). Besides that, from
the steady-state responses presented in Fig. 16(b) and (d), we can note that the oscillation frequency of the CombBeam-
based GPEH is reduced as compared to the conventional beam GPEH. The limit cycle oscillation occurs very close to the res-
onant frequency of the system. The fundamental natural frequencies of the conventional beam and CombBeam-based GPEHs
have been calculated and presented in Section 4. The phenomenon observed in terms of frequencies in Fig. 16.(b) and (d) is in
agreement with the calculated results in Section 4.

Fig. 17 further shows the power responses of the conventional beam and CombBeam-based GPEHs for different wind
speeds and load resistances. Though the existing theory indicates that the cut-in wind speed depends on the system damp-
ing that constitutes the mechanical and electrical damping components and varies with the change of the load resistance
Fig. 15. Experimentally measured and SDOF/MDOF model predicted open-circuit voltage amplitudes of conventional beam and CombBeam-based GPEHs
versus wind speed.
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Fig. 16. Transient open-circuit voltage responses of the conventional beam and CombBeam-based GPEHs under the wind speed of 3 m/s from numerical
simulation: (a) time history of the open-circuit voltage of the conventional beam GPEH, and (b) its zoomed-in view in steady-state; (c) time history of the
open-circuit voltage of the CombBeam-based GPEH, and (d) its zoomed-in view in steady-state.

Fig. 17. Power response versus wind speed for different load resistances: (a) conventional beam GPEH, (b) CombBeam-based GPEH.
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[37], from Fig. 17, we find that the cut-in wind speeds of both the conventional beam and CombBeam-based GPEHs are
insensitive to the change of the load resistance. This is because the electromechanical coupling of both systems are very
weak. Though the electrical damping varies with the change of the load resistance, the overall system damping has no obvi-
ous change. To support the above explanation, we can use the criterion presented in [58] to prove that both GPEHs studied in

this work are weak coupling systems. We define k2e ¼ H2=CpK as a non-dimensionless coupling coefficient. k2c ¼ 4fþ 4f2 is a

critical value that can be used to judge whether a PEH is a strong or weak coupling system [58]. k2e < k2c indicates that the
PEH is a weak coupling system. Otherwise, it is a strong coupling system. For the conventional beam GPEH, the non-

dimensionless coupling coefficient can be calculated as k2e ¼ 0:0023 using the derived lumped parameters in Section 4.1.

The critical value is calculated as k2c ¼ 0:1097 using the experimentally determined damping ratio of f ¼ 0:0267. Since

k2e ¼ 0:0023 < < k2c ¼ 0:1097, it is proved that the conventional beam GPEH studied in this work is a weak coupling system.
Though the above criterion only applies for a SDOF system, we can speculate that the CombBeam-based GPEH must also be a
weak coupling system, as the introduced parasitic beams are pure mechanical structures and cannot increase the coupling
coefficient of the CombBeam-based GPEH.

Regarding the output power amplitude, for the conventional beam GPEH, it is noted in Fig. 17(a) that the power output
increases with Rload up to 500kX then decreases when Rload further increases. The optimal power is obtained around 500kX.
It is revealed in Fig. 17(b) that the optimal resistance for the CombBeam-based beam GPEH is around 900kX. As compared to
the conventional beam GPEH, the power output from the CombBeam-based GPEH is substantially increased. For instance,
under the same wind speed of 3 m/s, the optimal power of the CombBeam-based GPEH is about 0.1245mW, while the opti-
mal power of the conventional beam GPEH is only about 0.0459mW. Therefore, it can be seen that the CombBeam-based
GPEH exhibits a significantly enhanced energy harvesting performance.
6. Conclusions

This paper has developed a CombBeam-based galloping energy harvesting system. A MDOF model has been established
for such a system by simplifying the host beam and parasitic beams as SDOF systems and deriving equivalent lumped param-
eters, various correction factors and scaling factors. The MDOF model was first successfully verified by finite element method
in the base excitation case. A prototype of the CombBeam-based GPEH was then built and the wind tunnel test further val-
idated the MDOF model in the aerodynamic excitation scenario. The result shows that the fundamental natural frequency of
the CombBeam-based GPEH is decreased and the cut-in wind speed is reduced for about 12.5% as compared to a conven-
tional beam GPEH, which indicates the advantage of the CombBeam-based GPEH for low-speed wind energy harvesting.
From the energy harvesting perspective, it is found that both the open-circuit voltage and the power output around the opti-
mal load resistance are increased by using the CombBeam-based GPEH. For a specific instance, under the same wind speed of
3 m/s, the optimal power output of the CombBeam-based GPEH is increased by about 171.2% as compared to the conven-
tional beam GPEH.
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